
SZTPD Design Notes

SZTPD Design Notes
Watsen Networks

February 19, 2023

Abstract

Some design notes for SZTPD.

Copyright © 2021 Watsen Networks. All Rights Reserved 1

SZTPD Design Notes

Contents
1 Introduction 3

2 End User Goals 3
2.1 Easy Installation . 3
2.2 High Portability . 3
2.3 Low Footprint . 3
2.4 Programmatic API . 3
2.5 Multi-tenant . 3
2.6 RDBMS Support . 3

3 High-level Decisions 4
3.1 Use Python . 4
3.2 Use Asyncio . 4
3.3 Use SQLAlchemey . 4
3.4 Product Modes . 4
3.5 Infra vs. App . 4
3.6 YANG-driven RESTCONF API . 4

4 Low-level Decisions 5
4.1 Data Abstraction Layer . 5
4.2 Distinct Validation Layer . 5
4.3 Native View vs. Facades . 5
4.4 Single Data Tree . 5
4.5 JSON-native . 5
4.6 Dynamic Callouts . 6

5 Module Diagram 6

Copyright © 2021 Watsen Networks. All Rights Reserved 2

SZTPD Design Notes

1 Introduction
This documentation describes the SZTPD design.

2 End User Goals
Some end user goals that greatly influenced the design.

2.1 Easy Installation
Many opportunities are missed due to onerous installation procedures. Keeping installation as simple as
possible seems good. Note, this is why SZTPD doesn’t use any configuration files, preferring instead to
put all data into the database supplied on the command line.

2.2 High Portability
Deployment environments vary, with many variations of Linux, BSD, and Windows to choose from, not
to mention some niche systems. In the same desire to simplify installation, a highly portable product
seems like goodness.

2.3 Low Footprint
There seems to be a sweet spot of having a minimal footprint, e.g., on CPU, memory, etc.. A low
footprint allows it to run as a micro-service within a larger framework, or as an ephemeral daemon in
an SDN context.

2.4 Programmatic API
Having everything available via a programmatic API enables many integration options. Not only can
a deployment-specific GUI be layered on top of it, but it can also be called into by controller / NMS
applications.

2.5 Multi-tenant
The immediate use-case is the network equipment vendors and, from their perspectives, they would need
to expose a multi-tenant service to their customers. Supporting tenants with isolated data views is
critical.

2.6 RDBMS Support
The ability to persist all SZTPD data into a RDBMS is needed to enable the use of a host of RDBMS
management tools enabling, for instance, backup, recovery, and encryption.

Copyright © 2021 Watsen Networks. All Rights Reserved 3

SZTPD Design Notes

3 High-level Decisions
3.1 Use Python
Using Python as the programming language was made based on past experience. Python is known for
its easy installs, high portability, and low footprint.

3.2 Use Asyncio
Previous experience suggests that a single process can handle the expected load with cycles to spare. The
simplicity goal is further achieved by not having to worry about virtual machines or Docker containers.‘

3.3 Use SQLAlchemey
Using SQLAlchemy was selected for its ability to work with multiple database backends, including in-
memory, file-based, and RDBMSs such as MariaDB, MySQL, Postgres, Oracle, etc.

A few “no SQL” databases were looked at. In particular, document and graph based databases, but all
required setting up an external server (no built-in in-memory or file-based options.

3.4 Product Modes
It seems common to have distinct “enterprise” and “service provider” versions of a product, modes ‘1’
and ‘x’, respectively.

3.5 Infra vs. App
In anticipation of developing other products, it was desired to factor as much domain-independent code
as possible into a generic application layer (YANGcore), on top of which a separate SZTPD-specific layer
defines the SZTPD product.

3.6 YANG-driven RESTCONF API
YANG RFC 7950 has been shown to be well suited to defining APIs for networking equipment. The
RESTCONF RFC 8040 protocol has been shown to provide an easy to use YANG-driven API.

Copyright © 2021 Watsen Networks. All Rights Reserved 4

https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc8040

SZTPD Design Notes

4 Low-level Decisions
4.1 Data Abstraction Layer
YANG models define arbitrary N-ary trees. It was needed to map arbitrary N-ary trees to SQL tables
and rows. Having a layer for this seemed prudent.

4.2 Distinct Validation Layer
The options for how to validate YANG datastore were unclear. Decision to use Yangson, but integrating
into DAL didn’t seem right. Currently a separate layer so can be swapped out with another option if
ever need be.

4.3 Native View vs. Facades
The database itself only ever persists the native view. This is why it is called the “native” view. The
other views define “facades” on top of the native view. The tenant view facade maps input/output as
needed. The rfc8572 view facade only responds to the two RPCs, though it internally writes to both the
audit log and bootstrapping log.

4.4 Single Data Tree
The current SZTPD schema uses a single data tree in one namespace. This is achieved via heavy use of
grouping statements in the YANG modules.

In alternative way to have approached this would’ve been to use Schema Mount, which defines a way to
mount a YANG schema at a particular location. This could’ve been used for the tenant views.

However, tooling support for schema mount doesn’t exist yet or, at least, isn’t available in common
tool-chains.

Having a single namespace also simplifies the code, but does limit the kinds of data models the generic
layer can support. That said, if its used for other products in mind, then it will have already paid itself
back.

4.5 JSON-native
Python objects are nearly indistinguishable from JSON objects - they both print the same tree structures.
Thus using JSON natively makes sense. This decision was/is further constrained by the fact that Yangson
only supports JSON as well.

Copyright © 2021 Watsen Networks. All Rights Reserved 5

https://tools.ietf.org/html/rfc8528

SZTPD Design Notes

4.6 Dynamic Callouts
SZTPD supports “dynamic callouts” in order to interact with external systems (except an RDBMS).
Notable uses are:

• to deliver system alert notifications
• to deliver bootstrapping event notifications
• to solicit a dynamic bootstrapping response
• to verify device ownership

At this time, dynamic callouts must be implemented by a plugin-based callback but, in a future release,
may be implemented as via a webhook (i.e., an HTTP POST request).

5 Module Diagram
The following diagram illustrates how the various Python modules within SZTPD are composed.

Figure 1: Module Diagram

Copyright © 2021 Watsen Networks. All Rights Reserved 6

	Introduction
	End User Goals
	Easy Installation
	High Portability
	Low Footprint
	Programmatic API
	Multi-tenant
	RDBMS Support

	High-level Decisions
	Use Python
	Use Asyncio
	Use SQLAlchemey
	Product Modes
	Infra vs. App
	YANG-driven RESTCONF API

	Low-level Decisions
	Data Abstraction Layer
	Distinct Validation Layer
	Native View vs. Facades
	Single Data Tree
	JSON-native
	Dynamic Callouts

	Module Diagram

